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This paper deals with compatible component selection problems, where the goal is to find combinations of 
components satisfying design constraints given a product structure, component alternatives available in design 
catalogue for each subsystem of the product, and a preliminary design constraint. An extended Constraint 
Satisfaction Problem (CSP) is introduced to solve component selection problems considering uncertainty in the 
values of design variables. To handle a large number of all possible combinations of components, the paper proposes 
a systematic filtering procedure and an efficient method to estimate a complex feasible design space to facilitate 
selection of component combinations having more feasible solutions. The proposed approach is illustrated and 
demonstrated with a robotic vacuum cleaner design example. 
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1.  INTRODUCTION AND BACKGROUND 
 
The product design process involves four main phases: (1) product specification, (2) conceptual design, (3) 
embodiment design, and (4) detailed design. At each phase, design teams first generate or search for several design 
alternatives, and select the best one considering design criteria and constraints. In conceptual design, for instance, 
this generation and selection process consists of four main steps (Pahl and Beitz, 1988) (see Figure 1): (1) 
decomposition-establish a function structure of a product, (2) definition-search for components to fulfil the sub-
functions and define a preliminary design constraint, (3) filtering-combine components to fulfil the overall function, 
select suitable combinations, and firm up into concept variants, and (4) selection-evaluate concept variants against 
technical and economic design criteria and select the best one. This divergence and convergence of the search space 
in design is intended to allow design teams to have unrestrained creativity by producing many initial component 
alternatives for subsystems, as well as to support the filtering and selection processes to find best design alternatives 
for a product. 
   The focus of this paper is on “filterning” in Figure 1. In particular, we consdider a constraint based compatible 
component selection problem under uncertainty in the values of design variables, especially in redesign and variant 
design environments. This problem is a combinatorial selection problem, where a component satisfying design 
constraints is chosen for each subsystem from a pre-defined set (i.e. design catalogue). It is compounded by multiple 
values or continuous space of design variables and discrete choices of components. In this work, it is assumed that a 
design catalogue (containing component alternatives for subsystems comprising a product) and a preliminary design 
constraint are given as input information (see Table 3). By generalizing the problem characteristics found, we 
formulate the constraint based component selection problem with an extended Constraint Satisfaction Problem 
(CSP). Finally, a systematic filtering procedure and an efficient method to estimate a complex feasible design space 
are proposed to select component combinations having more feasible solutions. 
   A product usually consists of a number of subsystems (see Table 1), where each of them has its own design 
alternatives, namely component alternatives. Table 2 lists a major list of variables used in this paper. Any 
combination of components of all subsystems can be a potential design alternative for a product. The selected 
components must be mutually compatible to achieve the overall functionality, where compatibility means that when 
components are designed to work others without adjustment (Patel et al., 2003). Therefore, design teams need to 
find the compatible combinations of components satisfying design constraints from all possible combinations. 
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Figure 1. Generation and selection processes in conceptual design (Pahl and Beitz, 1988) 

 
Table 1. A simple selection chart for a compatible combination search problem 

 

Subsystem (F) 
Component Alternative (CA) 

1 2 … j … m(i) 

1 F1 CA11 CA12 … CA1j … CA1m(1) 

2 F2 CA21 CA22 … CA2j … CA2m(2) 

M M M M  M  M 

I Fi CAi1 CAi2 … CAij … CAim(i) 

M M M M  M  M 

n Fn CAn1 CAn2 … CAnj … CAnm(n) 

The shading in the cells indicates an exemplary compatible combination of components 
 

Table 2. Nomenclature of variables used in the work 
 

Variable Description Variable Description 

Fi Subsystem i, where i=1, …, n dj (xi,k) 
Domain of xi,k given by component 
alternative j 

CAi,j 
Component alternative (CA) j for 
subsystem i, where j=1, …, m(i) UDOi,k 

United domain across all component 
alternatives of global design variable k for 
subsystem i 

xi,k Global design variable k for subsystem i RDOi,k 
Modified domain of UDOi,k applying AC-3 
technique (see Section 3.1) 

T 
(= 𝑚(𝑖)!

!!! ) 
Number of all possible combination of 
components ldop 

A set of domain, dj(p,i)(xi,k) for all i, j(p,i), k 
in combination(p), where p=1, …, T 

j (p, i) ∈ {1, 
… m(i)} 

Considered CA for subsystem i in 
combination p, where p=1, …, T 

CS 
(comb.(p)) Compatibility score for combination p 

components 
(design principles) 

filtering definition selection 

compatible combinations 

best design 
alternative(s) 

system 
(overall function) 

system structure 
(function structure) 

 

decomposition 

creative process decision process 
divergence/convergence of search 
space 

Generation  Selection  The scope of this paper 
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   However, the number of possible combinations grows rapidly with both the number of subsystems as well as the 
number of component alternatives for each subsystem. Furthermore, components are closely coupled with each 
other, therefore a change in one component may affect performance of the other components in the combination 
(Carlson-Skalak, 1996). Singhal and Singhal (1996) showed that the number of feasible designs decreases 
exponentially with the increase in the number of incompatible pairs of components. For these reasons, the first few 
compatible combinations found are usually accepted without further evaluation in many component selection design 
studies (Bradley and Agogino, 1994; Darr and Birmingham, 2000). However, this strategy may (1) omit more 
valuable combinations and (2) cause difficulties for design teams in selecting the best design alternative of a product 
satisfying multiple design criteria from a small set of compatible combinations found. 
   Researchers in the field of Artificial Intelligence have focused mainly on the dynamic nature of configuration with 
a relatively simplified binary design constraints, based on the notion of ‘Conditional CSP’ (Mittal and Falkenhainer, 
1990; Sabin and Freuder, 1996). Kim et al. (2006) pointed out that this type of design constraints imply that the 
compatibility of a certain pair of components is given a priori, and each component itself can be considered as a 
design variable. In other words, no matter what and how many complex binary design constraints are involved in a 
certain pair of components, they are simplified into a ‘good or ‘bad’ relation of the pair, without directly considering 
coupled design variables of components and the constraints behind them. This paper therefore introduces an extend 
CSP to measure the compatibility of components and consequently filter out compatible combinations of 
components efficiently. 
 
2.  COMPATIBLE COMPONENT SELECTION PROBLEM UNDER UNCERTAINTY 
 
2.1 Real-life Design Example, Design Catalogue, and Assumptions 
This section describes a robotic vacuum cleaner (RVAC) design example (see Figure 2), which contains four 
subsystems (see Table 3): F1: Filter, F2: Main motor & Impeller, F3: Battery, and F4: Dust container & Cover. Each 
subsystem has two component alternatives. For example, ‘Regular’ and ‘HEPA’ are alternatives for the subsystem 
‘Filter’. As a result, there are 16 different combinations of components, i.e. 16 design alternatives for a RVAC. For 
example, the combination of HEPA, Type A, Li-ion, and Cyclone constitues a design alternative. A main task of 
compatible component selection addressed in this paper is to find the compatible combinations considering the 
design constraints. Note that the desired number of combinations can be specified a priori, and the selected 
combinations will be used as input for the final selection process (see Figure 1). 
 
 

 
 
 

Figure 2. Case example: a robotic vacuum cleaner (RVAC) 
 
 
   It is important to note that each component alternative has different values for the global design variables 
(synonymous with interface variables, shared variables, or dependent variables in the literature). For example, the 
airflow resistance of ‘HEPA’ filters is usually bigger than that of ‘Regular’ filters. Furthermore, each global design 

main motor 

DC motor 

drive wheel 
battery 

dust container 

main control board 

sensors 

intake port 

filter & impeller 
Cover 

bumper 



Compatible Component Selection  
 

467 
 

variable has its own domain because each design team may have a set of approximate, admissible and achievable 
values for a global design variable, e.g. {3,4,5,6,7} of the airflow resistance of ‘Regular’ filter in Table 3. It can be 
said, especially in the early design phase, that various factors such as lack of knowledge, incomplete information, 
and open-ended creativity entail uncertainty in the values of design variables. In this paper, it is assumed that the 
domain of each global design variable is either a set of discrete choices or bound within an interval. In the RVAC 
example, a further assumption is made that an interval is discretized and approximated as a finite set of discrete 
choices. For example, the original interval, [3…7] is discretized into {3,4,5,6,7} for the domain of the airflow 
resistance of ‘Regular’ filter. In engineering problems, there is usually a maximal precision such as nanometer and 
microgram, and design variable values can be discretized into the maximal useful resolution (Sam-Haroud and 
Faltings, 1996). 
   In addition, it is assumed that in the design constraint C4 in Table 3, the values for the energy consumption 
(Watt·h) of F2 are approximated by Watt(N·m/s)=airflow(m3/s) × suction pressure(N/m2); Time(h)=Ah × V/Watt; 
neglecting losses we can express motor power=airflow × suction pressure; assuming an airflow of 0.1 m3/sec, then 
constraint C4 expresses our desire for assuring an operating time of at least 0.5h, Capacity (Ah·V) ≥ motor 
power×0.5h=(0.1× x 2,1 ) × 0.5h. 
   Design variables and constraints are continuously changed by insert, delete, and modify operations throughout the 
design process because of the evolutionary and creative nature of the design process. Nevertheless, once a valid 
system structure is established such that a unique fixed configuration is specified, it is possible to assume that the 
design constraints are static in contrast with the dynamic constraints in Mittal and Falkenhainer (1990). In other 
words, a component selection problem is not necessarily considered as a Conditional CSP of Mittal and 
Falkenhainer (1990). Moreover, in a collaborative design environment, different design teams participate and 
collaborate all together from the beginning of the design process, and thus, each subsystem is developed in parallel 
by design teams in such a way that the properties of components are more or less well-known and quantitatively 
elaborated. This is even true in redesign or variant design. Consequently, a rough set of design variables and their 
relationships can be specified to some degree, and this rough information (preliminary design constraint) is still 
valuable to eliminate incompatible components from the search space. 
 

Table 3. Design catalogue for a robotic vacuum cleaner 
 

Subsystem Fi 
Global design variable 
xi,k 

Component alternatives CAi,j 
and Domain dj(xi,k) 

Unified Domain 
UDOi,k 

F1: 
Filter 

 CA1,1: Regular  CA1,2: HEPA  
x1,1: Airflow 
resistance(%) d1(x1,1):{3,4,…,7} d2(x1,1):{5,6,…,12} UDO1,1:{3,4,…,12} 

x1,2: EOL value(€) d1(x1,2):{5,6,…,15} d2(x1,2):{15,16,…,25} UDO1,2:{5,6,…,25} 

F2: 
Main motor 
& Impeller 

 CA2,1: Type A  CA2,2: Type B  
x2,1: Suction (Pa) {600,601,…,900} {850,851,…,1200} {600,601,…,1200} 
x2,2: layout type (motor 
axis-airflow direction) {H-H,V-V} {V-H} {H-H, V-H, V-V} 

F3: 
Battery 

 CA3,1: Ni-Cd  CA3,2: Li-ion   
x3,1: Capacity(Ah×V) {15,16,…,30} {20,21,…,50} {15,16,…,50} 

F4: 
Dust 
container 
& Cover 

 CA4,1: Dust bag or 
plastic bin  CA4,2: Cyclone   

x4,1: Housing type {flat,semi} {top} {flat,semi,top} 
x4,2: EOL value(€) {5,10,15,20} {15,20,25} {5,10,15,20,25} 

Design constraints 

C1: x 2,1  × (100%- x 1,1) ≥ 700Pa (suction) 
C2: x 1,2  + x 4,2 ≥ 40€ (end of lifecycle value) 
C3: if x 2,2  = V-V or V-H then x 4,1 = top (topological) 
C4: x 3,1  ≥ 0.5×0.1× x 2,1 (Operating time ≥ 0.5hr.) 

(Airflow resistance (%): % of suction pressure) 
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2.2 Design Space 
A special property of component selection problems is that each combination of components creates its own design 
constraint having a different set of domains for the global design variables. For example, the domains of x1,1: 
Airflow resistance and x1,2: EOL value composed by the following components: CA1,1 (Regular), CA2,1, CA3,1, and 
CA4,1 are {3,4,5,6,7} and {5,10,15}, respectively, while they are {5,6,7,…,12} and {15,20,25} in the case composed 
by CA1,2(HEPA), CA2,1, CA3,1, and CA4,1 in Table 3. In other words, for the RVAC design example, we need to deal 
with 16 different cases (i.e. CSPs; see Section 2.3) each having different domains but the same set of design 
constraints. Note that a combination p of components is denoted as combination(p) such that 

1, ( ,1) 2, ( ,2) , ( , ) , ( , )combination( ) = CA CA CA CAj p j p i j p i n j p np × × ×K K
 

For example, j(p,1) = 2, j(p,2) = 1, j(p,3) = 1, j(p,4) = 2 in combination(p) = CA1,2×CA2,1× CA3,1×CA4,2. 
   In the last column of Table 3, UDOi,k implies all possible values of each global design variable across all 

components, and this can be obtained by the union of domains: 
( )

, ,1
( )m i

i k j i kj
UDO d x

=
= U  . For example, UDO1,1 = 

d1(x1,1) ∪ d2(x1,1) = {3,4,5,6,7} ∪ {5,6,7,…,12} = {3,4,5,…,12}. 
   The global design space of a compatible component selection problem is defined by the Cartesian product of 
UDOi,k for all subsystem i and global design variable k. Note that hereafter UDO denotes a set of unified domains, 
UDOi,k for all i and k. For example, UDO of the RVAC design example is {{3,4,5,…,12}, {5,6,7…,25}, 
{600,601,602,…,1200}, {H-H, V-H, V-V}, {15,16,17,…,50}, {flat,semi,top}{5,10,15,20,25}}. Similarly, the local 
design space of a combination(p) is defined by the Cartesian product of dj(p,i)(xi,k) for all i and k, and the selected 
component j(p,i) for each subsystem. Note that hereafter ldop denotes a set of domains, dj(p,i)(xi,k) for all i, j(p,i), k in 
combination(p). For example, for combination(1) = CA1,1×CA2,1×CA3,1×CA4,1, ldo1 = {{3,4,5,6,7}, {5,6,7…,15}, 
{600,601,602,…, 900}, {H-H, V-V}, {15,16,17,…,30}, {flat,semi}{5,10,15,20}}. And, LDO contains sets of all 
ldop, i.e. {ldo1, ldo2, …, ldop, …, ldoT}. 
 
2.3 CSP Formation for Compatible Component Selection 
A Constraint Satisfaction Problem (CSP) is formally defined as follows (Tsang, 1993):  
Definition 1. A CSP involves a triple <X, D, C>, where X denotes a set of finite variables, D: denotes a set  of 
domains containing a finite set of values for each variable, and C: denotes a finite set of constraints that restrict the 
combination of values from the Cartesian product of all variable domains. In this work, a CSP consisting of X, D, 
and C is denoted as CSP<X,D,C>. 
   Three general tasks of CSPs are: (1) to find one tuple of D, satisfying C, (2) to find all tuples of D, satisfying C, or 
(3) to validate the feasibility of a certain tuple. A tuple is a set of values assigned to each variable from the 
corresponding domain. Therefore, each tuple is a candidate solution for a CSP, and those tuples that satisfies all the 
constraints are the solutions. Among the three general tasks, the second one is more relevant for the context of 
compatible component selection. For the first and third cases, a corresponding task in component selection is to find 
combinations of components having a feasible tuple, where values are already assigned for all design variables, and 
therefore there is no need for further design (e.g. no room for optimisation). In addition, if there are many 
combinations each having a feasible tuple, it is difficult to judge which one is the best. Furthermore, many 
preliminary design problems involving incomplete data and partially defined variables are usually under-constrained 
(Medland and Mullineux, 2000), therefore many combinations could have many feasible tuples. Therefore, a 
specific goal in this paper is to find the combination that has more feasible tuples than the others as illustrated in 
Figure 3. The reasoning behind this goal is that if the combination found has more feasible tuples, there will be more 
chance to control the design variables for optimisation based on design criteria in the subsequent design stages. 
Given that X and C denote the sets of global design variables and design constraints, respectively, compatible 
component selection problems are formally defined as follows: 
Definition 2. A compatible component selection problem is a quadruple <X, LDO, UDO, C>, where LDO = {ldo1, 
ldo2, …, ldop, …, ldoT} is a set of T subsets of UDO, such that CSP<X, ldop, C> ⊆ CSP<X, UDO, C>, 
∀p=1,2,…,T. 
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Figure 3. The filtering process (compatible component selection; see Figure 1) in the CSP 
structure 

 
 
2.4 Computational Complexity 
As mentioned in Section 2.2, the RVAC design example involves 16 possible combinations (i.e. CSPs). To emplay 
an exact solution approach, it is necessary to find all feasible tuples for each combination exhaustively (NP-hard in 
general) and rank the combinations based on the number of feasible tuples in each combination. In other words, a 
compatible component selection problem consists of ‘T’ NP-hard problems (i.e. the number of total combinations T 
increases exponentially with the numbers of subsystems and component alternatives of subsystems as shown in 
Table 1) and one sorting problem. A possible brute force solution method is to employ techniques estimating 
feasible number of solutions (Dechter and Pearl, 1988; Bailleux and Chabrier, 1997) to all CSPs. However, Roth 
(1996) discussed the computational complexity of counting problems and proved that the problem of computing the 
number of solutions of a (binary) CSP is complete for #P, where #P problems ask ‘how many’ rather than ‘are there 
any’, i.e. counting problems to find or approximate the number of solutions in the decision problems in the set NP 
(e.g. CSP). Clearly, a #P problem must be at least as hard as the corresponding NP problem 
(http://en.wikipedia.org/wiki/Sharp-P). Furthermore, approximating this number within a reasonable error bound is 
NP-hard. Therefore, the above techniques are generally intractable due to too many CSPs available in a compatible 
component selection problem. 
 
3.  PROPOSED FILTERING PROCESS 
 
This section presents a generic framework for the filtering process as a solution estimation method for the extended 
CSP formulated for component selection. For the case of (1) relatively smaller number of total combinations or (2) 
insufficient common values between domains of different components, a possible method is to employ a consistency 
technique (Mackworth, 1977) for all CSPs, obtain the upper bound on the number of feasible tuples of each CSP, 
and use these upper bounds to rank order the combinations. In general, however, considering that all different CSPs 
have the same set of design constraints, many common values among the components (e.g. 5, 6, 7 (airflow 
resistance) are common between Regular and HEPA filters in Table 3) may cause the combinations to have many 
redundant feasible tuples, where it would be wasteful to assess each and every combination. In addition, instead of 
absolute counting or estimating feasible tuples for all combinations, relative comparison of the search space are 
more efficient to identify the best combination. In other words, since CSP<X, ldop, C> ⊆ CSP<X, UDO, C>, the 
feasible space of CSP<X, UDO, C> will be computed instead of computing the feasible space of each CSP<X, ldop, 
C> for all p, and relative comparisons between each local design space and the feasible space of CSP<X, UDO, C> 
will be made. 
 

ds(com.1) 
ds(com.2) 

ds(com.3) 

ds(com.4) 

feasible space 

Filtering: find combinations that have relatively more 
feasible tuples than the others, e.g. combination 2 & 
combination 3 have more feasible tuples than the others, 
i.e. larger intersection with the feasible space. 

ds(com. 1): local design space of 
combination(1). 

Selection 

ds(com.2) 

ds(com.3) 
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3.1 Estimation of the Feasible Space of CSP <X, UDO, C> 
Finding an exact feasible space is an extremely hard problem in general. During the last two decades, there have 
been research efforts to estimate a feasible space depending on the properties of a problem such as 
continuous/discrete, binary/non-binary, linear/non-linear, and convex/non-convex. The main goal here is to find the 
most compact bounds of the feasible space (e.g. convex hull of feasible solutions), which conservatively enclose all 
the solutions (Sam-Haroud and Faltings, 1996). 
   Yao and Johnson (1997) presented a domain propagation algorithm to obtain a multidimensional compact interval 
box, by which one can expect a better estimation of the feasible space (see Figure 4-(b)) than by the simple unary 
projection of constraints (see Figure 4-(a)). Their basic idea is to apply a mathematical programming method to 
determining the minimum and maximum feasible values of each variable. Under strict assumptions such as the 
convexity of the search space and nonlinear inequality constraints, Director and Hachtel (1977) proposed a simple 
polyhedral approximation method based on mathematical programming and Monte Carlo simulation techniques. 
Interval arithmetic techniques, by their nature, can be applicable to estimating the feasible space under strict 
assumptions such as polynomial constraints, a matrix made by the constraint coefficients are regular, and globally 
dominant Jacobians (Neumaier, 1990). For the above specific constraints, interval propagation can be achieved 
efficiently because it handles the entire set of constraints as a whole and in most cases, only minimum and 
maximum values are enough to consider for validation (Karni and Belikoff, 1996). Qureshi et al. (2010) integrated a 
set-based design approach into a statistical robust design method of mechanical systems in order to effectively 
explore the solution space of the embodiment design phase. Several consistency techniques have been proposed for 
continuous variables (Lhomme, 1993; Faltings, 1994; Sam-Haroud and Faltings, 1996; Benhamou et al., 1999; 
Lottaz et al., 2000; Granvilliers and Benhamou, 2006; Bolloju et al., 2012) (see Figure 4-(c)). In fact, consistency 
techniques (Mackworth, 1977) are usually used in pre-processing to discard many inconsistent values in domains 
based on the construction of partial solutions in the discrete search space. For the continuous case, interval based 
algorithms are incorporated into consistency techniques (e.g. Granvilliers and Benhamou, 2006) or continuous 
variables are discretized and approximated as a finite set of discrete choices (values) (Sam-Haroud and Faltings, 
1996). 
 
 

 
 

Figure 4. Feasible space approximation techniques 
 
 
   For the case of the RVAC design example, domains of design variables are discretized and the constraints are 
binary. Therefore, conventional arc-consistency techniques (e.g. AC-3, Mackworth, 1977) can be used to eliminate 
inconsistent values from the domains to estimate a conservative pave of the feasible space. Depending on the 
problem size and complexity, stronger consistency techniques (e.g. path-consistency (Han and Lee, 1988)) or 
weaker consistency techniques (e.g. partial arc-consistency ( Nadel, 1989)) can be employed.  
   Table 4 depicts the revised domains of each UDOi,k, denoted as RDOi,k, by applying AC-3 which allows all 
variables and associated constraints to be revised in any order. Then, the feasible space of the RVAC design 
example can be approximated by the Cartesian product of RDOi,k for all i and k. The upper bound of the number of 
feasible tuples can be approximated by |𝑅𝐷𝑂!,!|∀!,! , i.e. 10×11×279×3×14×3×3=11,600,820, which is about 5.7% 
of that of all possible tuples, |𝑈𝐷𝑂!,!|∀!,!   = 204,460,200. Note that the number of elements of a set S is denoted 
|  S  |. 
  

Feasible  
space 

(a) Unary projection of 
constraints 

(b) Yao and Johnson (1997) (c) Consistency techniques  
for numeric CSPs 
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Table 4. Revised domain RDOi,k of the RVAC design example after applying AC-3 technique 
 

Fi UDOi,k | UDOi,k | RDOi,k | RDOi,k | 

F1 
UDO1,1 {3,4,…,12} 10 RDO1,1 {3,4,…,12} 10 

UDO1,2 {5,6,…,25} 21 RDO1,2 {15,16…,25} 11 

F2 
UDO2,1 {600,601,…,1200} 601 RDO2,1 {722,723,…,1000} 279 

UDO2,2 {H-H, V-H, V-V} 3 RDO2,2 {H-H, V-H, V-V} 3 

F3 UDO3,1 {15,16,…,50} 36 RDO3,1 {37,38,…,50} 14 

F4 
UDO4,1 {flat,semi,top} 3 RDO4,1 {flat,semi,top} 3 

UDO4,2 {5,10,15,20,25} 5 RDO4,2 {15,20,25} 3 
 
3.2 Rank Ordering 
To find the combination containing the maximum number of feasible tuples, it is necessary to compute the feasible 
space of CSP<X, ldop, C> for all p. However, considering a large number of total combinations, relative 
comparisons are made among each local design space of a combination and the estimated feasible space of CSP<X, 
UDO, C> that was obtained in Section 3.1. As illustrated in Figure 3, if the local design space of a combination has 
the largest intersection with the feasible space of CSP<X, UDO, C>, the feasible space of that combination is the 
largest. However, in general, finding this intersection is not straightforward as each local design space restricts a 
certain region of the feasible space again. Therefore, we propose to estimate the upper bound of the intersection size 
(i.e. upper bound of the number of feasible tuples of a combination) based on the common values of each design 
variable between a local design space and the estimated feasible space. In other words, the intersection size, namely, 
the compatibility score of the combination p, denoted as CS(combination(p)) in this work, can be estimated by the 
product of the number of common values between dj(p,i)(xi,k) and RDOi,k for all i and k as follows: 

,)j(p,i) i,k i k
 i,k

CS(combination(p))= d (x RDO
∀
∏ I

 

... (1) 

 

 
 

 
Figure 5. Estimation of the numberof feasible tuples of a combination 

 
 
   As illustrated in Figure 5, the compatibility score means the upper bound of the number of feasible tuples of a 
combination, which can be obtained by determining the intersection between the local design space of 
combination(p) and the estimated feasible space of CSP<X, UDO, C>. For example, CS(combination(3) = 
CA1,1×CA2,1× CA3,2×CA4,1) can be calculated by: |{3,4,…,7}| × |{15}| × |{722,723,…,900}| × |{H-H,V-V}| × 
|{37,38,…,50}| × |{flat,semi}| × |{15,20}| = 5×1×179×2×14×2×2 = 110,240. Accordingly, it can be said that the 
maximum number of feasible tuples of combination(3) is 110,240. 
  

ds(com. p): local design space of 
combination(p) 

feasible space of CSP<X, 
UDO, C> 

ds(com.p) 
estimated feasible space of 
CSP<X, UDO, C> (Section 3.1) 

estimated feasible space of 
combination(p) 
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Table 5. Compatibility scores of all 16 combinations of components 
 

CS(combination(p)) Calculation Rank 

CS(combination(1)=CA1,1×CA2,1×CA3,1×CA4,1) 5×11×179×2×0×2×2 = 0 incompatible 

CS(combination(2)=CA1,1×CA2,1×CA3,1×CA4,2) 5×1×179×2×0×1×3 = 0 incompatible 

CS(combination(3)=CA1,1×CA2,1×CA3,2×CA4,1) 5×1×179×2×14×2×2 = 110,240 5 

CS(combination(4)=CA1,1×CA2,1×CA3,2×CA4,2) 5×1×179×2×14×1×3 = 75,180 6 

CS(combination(5)=CA1,1×CA2,2×CA3,1×CA4,1) 5×1×151×1×0×2×2 = 0 incompatible 

CS(combination(6)=CA1,1×CA2,2×CA3,1×CA4,2) 5×1×151×1×0×1×3 = 0 incompatible 

CS(combination(7)=CA1,1×CA2,2×CA3,2×CA4,1) 5×1×151×1×14×2×2 = 42,280 7 

CS(combination(8)=CA1,1×CA2,2×CA3,2×CA4,2) 5×1/×151×1×14×1×3 = 31,710 8 

CS(combination(9)=CA1,2×CA2,1×CA3,1×CA4,1) 8×11×179×2×0×2×2 = 0 incompatible 

CS(combination(10)=CA1,2×CA2,1×CA3,1×CA4,2) 8×11×179×2×0×1×3 = 0 incompatible 

CS(combination(11)=CA1,2×CA2,1×CA3,2×CA4,1) 8×11×179×2×14×2×2 = 1,764,224 1 

CS(combination(12)=CA1,2×CA2,1×CA3,2×CA4,2) 8×11×179×2×14×1×3= 1,323,168 2 

CS(combination(13)=CA1,2×CA2,2×CA3,1×CA4,1) 8×11×151×1×0×2×2 = 0 incompatible 

CS(combination(14)=CA1,2×CA2,2×CA3,1×CA4,2) 8×11×151×1×0×1×3 = 0 incompatible 

CS(combination(15)=CA1,2×CA2,2×CA3,2×CA4,1) 8×11×151×1×14×2×2 = 744,128 3 

CS(combination(16)=CA1,2×CA2,2×CA3,2×CA4,2) 8×11×151×1×14×1×3= 558,096 4 

 
   Table 5 summarizes the compatibility scores and their calculation processes. According to the compatibility scores 
in Table 5, combination(11), the combination of HEPA, Type A, Li-ion, and Dust bag or plastic bin is the best 
compatible combination, while 8 combinations are incompatible. These 8 combinations having no feasible tuples 
must be eliminated from further consideration. Note that the desirable number of acceptable combinations can be 
specified a priori. For example, if the design team specifies this number as ‘4’, combination(11), combination(12), 
combination(15), and combination(16) will be selected for the subsequent selection process. If there exist a tie in 
compatibility scores by multiple combinations, the design team can break the tie in an arbitrary manner. 
 
4.  DESIGN IMPLICATIONS OF WORK AND DISCUSSION ON PROBLEM 
VARIATIONS 
 
The goal of this section to discuss validation of the underlying assumptions of the considered problem in this work. 
In general, each component can have different global design variables in a subsystem, and hence associated design 
constraints can vary. For example, it may be necessary to consider another design variable, ‘Airflow resistance’ for 
‘Dust bag or plastic bin’, but this design variable is not required for ‘Cyclone’ (see Table 3). However, Definition 2 
in Section 2.3 already includes this type of complicated cases, where all necessary design variables across different 
components in a subsystem can be considered as a whole, while the unnecessary design variable ‘Airflow resistance’ 
for ‘Cyclone’ has a NULL value. 
 Darr and Birmingham (2000) have suggested that if it is possible to eliminate incompatible components or 
incompatible pairs of components after a few consistency checks, then the possible combinations will be reduced 
drastically. Hence, it is possible to take further assumptions into account. For example, if global design variables are 
clearly specified and each design variable has a deterministic value, it is then a conventional component selection 
problem under certainty (e.g. in Patel et al., 2003). 
   In general, many real-world design problems involve design team’s preferences among potential design solutions, 
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therefore not all solutions are equally good. For example, a suction motor design team may want to increase the 
suction power requiring a sufficient battery capacity, which naturally requires a larger size housing design while a 
housing design team may prefer a smaller size housing design (Kim et al., 2006). Nonetheless, in classical CSPs, 
there is no notion of ‘better’ or ‘worse’ solutions, which is still true for the filtering process. Recently, there have 
been some research efforts devoted to address this issue of incorporating user preferences into classical CSPs under 
the following research terms: constraint optimization (Tsang, 1993), soft-constraints (Freuder et al., 2003) and 
preference based search (Junker, 2002). Patel et al. (2003) have considered the preference on each component and 
attempted to use physical programming and graph theoretic techniques to obtain sets of preferred subsystem design 
concepts. D’Ambrosio and Birmingham (1995) presented a preference-directed design method, by which they tried 
to minimize the enumeration and evaluation of design alternatives. 
   It can be considered that after defining a feasible space (see Section 3.1), a stakeholder (e.g. a project manager) 
can distribute this information as a design guideline (e.g. admissible value ranges for design variables) to each 
subsystem design team. However, in collaborative design, this type of centralised and hierarchical approach would 
not be recommendable as it can restrain the creativity of each design team. Furthermore, it is very often more 
difficult to find the feasible space of a problem with universal domains; for the RVAC design example, UDO 
specifies the necessary domains for estimating the feasible space. 
 
5.  CONCLUSION 
 
This paper introduced a CSP extension for constraint based compatible component selection problems considering 
uncertainty in the values of design variables that is modelled by either interval or discrete choices. The considered 
compatible component selection problem is a combinatorial selection problem to choose a component from a pre-
defined set of components for each subsystem of a product satisfying design constraints. The main feature of the 
problem is that each combination of components creates its own CSP having a different set of domains for the global 
design variables, and thus the problem includes many CSPs based on the number of possible combinations of 
components. Therefore, the decision space of the considered problem is compounded by multiple values or 
continuous space of global design variables and discrete choices of components. 
   To resolve such challenging component selection problem, a system framework was proposed for the filtering 
process (reducing the number of possible combinations for the subsequent selection process) to estimate the 
solutions, which has enabled scoring and rank ordering of combinations of components. The proposed framework 
and techniques has been illustrated and demonstrated for a robotic vacuum cleaner (RVAC) design example. The 
proposed filtering process in the RAVC design example has eliminated 8 incompatible combinations out of a total 
16 combinations, and has determined combination(11) with HEPA, Type A, Li-ion, and Dust bag or plastic bin as 
the best compatible combination. 
   The proposed compatible combinations having the largest intersection with the feasible space under the design 
constraints (i.e. having the maximum number of feasible tuples) will provide design teams with flexibility in 
controlling the design variables for further optimisation in the subsequent design stages. 
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